Mokslininkai surado atsakymą: galėtume skristi į kitą planetą už 4 šviesmečių!
Vie­ną gra­žią – ir ne to­kią jau to­li­mą – die­ną, švie­sos bu­rės ga­li skrie­ti kos­mo­su maž­daug 20% švie­sos grei­čio (~60 000 km/s), va­ro­mos ne che­mi­ni ku­ru, o stu­mia­mos spin­du­lia­vi­mo slė­gio, ku­rį su­kur­tų ga­lin­gi la­ze­riai Že­mė­je. Ke­liau­da­mos to­kiu re­lia­ty­vis­ti­niu grei­čiu, la­ze­rių va­ro­mos švie­sos bu­rės ar­ti­miau­sią kai­my­ni­nę žvaigž­dę, Ken­tau­ro Al­fa ar­ba ar­čiau­sią ži­no­mą po­ten­cia­liai gy­vy­bei tin­ka­mą pla­ne­tą, Ken­tau­ro Prok­si­mą b, per maž­daug 20 me­tų. Abu šie ob­jek­tai yra kiek to­liau nei už ke­tu­rių švies­me­čių.

Tačiau šviesos burių kūrimas pateikia tokius inžinerinius iššūkius, kad jas sukurti atrodo praktiškai neįmanoma. Reikia suderinti viena kitai prieštaraujančias savybes: idealios šviesos burės turėtų būti kelių metrų pločio ir mechaniškai patvarios, kad atlaikytų intensyvų spinduliavimo slėgį, tačiau būtų vos 100 nanometrų storio (~1000 kartų plonesnės už žmogaus plauką) ir svertų vos keletą gramų.

Kitus reikalavimus diktuoja šviesos burių veikimo mechanizmas. Maksvelo lygtys rodo, kad šviesa turi impulsą, tad gali slėgti objektą. Tačiau šviesos bures spinduliavimas stumia ne taip, kaip burlaivį – vėjas. Stūmą sukuria šviesos burių atspindėtas spinduliavimas. Dėl to optimalios šviesos burės turėtų didžiumą lazerio trumpųjų IR bangų atspindėti, o tuo pat metu skleisti vidutiniojo IR spektro bangas ir efektyviai aušintis.

Nanofotoninės burės

Naujame tyrime, publikuotame Nano Letters, tyrėjai Ilic, Cora Went, ir Harry Atwater iš Kalifornijos technologijos instituto Pasadenoje, parodė, kad griežtus reikalavimus, keliamus reliatyvistiniais greičiais galinčioms skrieti šviesos burėms, atitinka nanofotoninės struktūros.

Ankstesnėse šviesos burėse buvo naudojamas ultraplonas aliuminis, įvairūs polimerai ir anglies pluoštas. Kitaip nei šios medžiagos, nanofotoninės struktūros gali manipuliuoti šviesa mažesniu nei bangos ilgis masteliu, o tai tuo pačiu metu suteikia efektyvios stūmos (atspindis) ir šilumos išsklaidymo (emisija) pranašumą. Kaip pavyzdį tyrėjai pademonstravo dvisluoksnio silicio ir silicio dioksido perspektyvumą dėl apjungtų šių medžiagų savybių. Silicio didelis lūžio rodiklis – tad efektyvi stūma – bet aušinimo savybės prastos, tuo tarpu silicio dioksido radiacinio aušinimo savybės geros, bet mažesnis lūžio rodiklis.

Straipsnyje tyrėjai taip pat pasiūlė naują naudingumo rodiklį, kuriuo galima įvertinti mažos burės masės ir didelio atspindėjimo efektyvumo balansą. Ateityje ši koncepcija padės minimizuoti lazerio galios ir lazerio masyvo dydžio reikalavimus.

Šviesos burių priešistorė

Nors pati koncepcija sukurta beveik prieš šimtą metų, tik pastaraisiais dešimtmečiais technologijoms pavyko prisivyti mokslininkų vizijas apie šviesos varomus erdvėlaivius. Ankstyviausi konceptai, įkvėpti Saulės spinduliavimo nupučiamos kometų uodegos, naudojo ne lazerių, o Saulės šviesos slėgį.

Pirmasias šviesos bures 2010 paleido Japonijos aerokosminių tyrimų agentūra (Japan Aerospace Exploration Agency – JAXA). Burės per šešis mėnesius sėkmingai pasiekė Veneros orbitą, varomos vien Saulės spinduliavimo slėgio. Dabar tyrėjai kuria šviesos bures, galinčias išvystyti didesnį pagreitį, prilygstantį raketų kuriamam, o taip būtų galima erdvėlaivius iškelti be milijardus dolerių kainuojančių įprastų degalų.

Nors šviesos burės gali įgyti greičius, prilygstančius raketų greičiams, šviesos spinduliavimas santykinai silpnesnis už kuriamą galingų lazerių masyvo. Dėl to lazerių masyvas turi daug didesnio greičio – netgi tokio, kuriuo jau pasireikštų reliatyvistiniai efektai – suteikimo potencialą. Bet kol tokios lazeriais varomos bus pademonstruotos, dar laukia daug darbo.